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A new approach is introduced in order to estimate the critical parameters of
continuous percolation of overlapping disks in R2 when the centres of the disks
are Poisson distributed. Better insights on relevant parameters near criticality
are found. Moreover, introducing a suitable connectivity length, the model is
able to describe continuous percolation of any type of geometrical objects in R2.
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1. INTRODUCTION AND DEFINITIONS

The morphology of disordered systems has two major aspects: topology
describing the connectivity of the microscopic elements of the system and
geometry taking into account the shapes and sizes of these individual ele-
ments. Percolation tells us when a disordered system is macroscopically
connected.

In Mathematical Physics, percolation theory on regular lattices has
already a long standing and successful history. On the contrary percolation in
continuous systems and on random graphs has received less attention in spite
of its great interest in applications. Over the past four decades, percolation



has been applied to modeling a rich variety of phenomena in disordered
systems like conductivity in disordered semiconductors, permeability of
porous media [FH], fracture network of rocks [Sah], spread of Aids
epidemics [Bl] and even quark-gluon plasma formation in QCD gauge
theories [Sa].

We would like to stress that our approach here will refer to continuous
systems without introduction of any lattice approximation.

Let us recall the main features of continuous percolation, i.e., model-
ing a random medium—in fact randomly distributed objects in homoge-
neous media—by using the features of stochastic geometry. The basic facts
are quite elementary. Let {xi}, i ¥ I …N the points of a standard Poisson
process in Rd (d > 1) endowed with the Euclidean distance, with intensity r.

For each xi one chooses at random a geometrical object from a set A
and places it in Rd so as to cover xi. In the following we are mostly concerned
with the cases in which A is a one point set (i.e., we have copies of one and
the same geometrical object P, typically a sphere of given radius R).
Moreover P has a distinguished point X (and sometimes a preferred
orientation) and the i th copy of P is placed so that xi=X.

Denoting by Pi the object centered in xi we are interested in clusters of
overlapping objects and in particular in the existence of a critical value of r
such that for r N rc there exists an infinite incipient cluster ‘‘spanning’’ all
the space domain. By this we mean as usual that for any r larger than rc,
with probability one, there is a sequence of cubes Ki of side Li with Li
going to infinity as i goes to infinity, such that for any i, there is a con-
nected cluster which ‘‘spans’’ Ki, i.e., touches opposite sides of Ki.

Let declare two objects Pi and Pj adjacent (or neighbour) if Pi 5Pj
]”. We say that two objects (or the two corresponding points xi and xj)
are connected, Pi }Pj (or xi } xj), if there exists a chain of adjacent
objects (or neighbour points) connecting these two objects (or these two
points). A cluster is a maximal set {Pi}i ¥ J …N (or {xi}i ¥ J …N) of connected
objects (or points). The aim of continuous percolation theory is to study
the sizes and shapes of clusters for specified values of r and typical objectsP.
As in the case of lattice percolation in a infinite domain, the existence of an
‘‘infinite incipient’’ cluster is linked to the long range connectivity property
of the random system. The study of the phase transition associated with the
appearance of an infinite cluster is one of the main problem of percolation
theory. Objects as diverse as disks, squares, needles in R2, spheres, cubes,
ellipsoids, in R3 have been used for typical models (see, e.g., [G, PS]).

For general results on continuous percolation see [Ba, Al1, Al2, I].
For recent results concerning the scaling properties of the infinite percolat-
ing cluster see [A1, A2]. For links between continuous percolation and
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phase transitions in spins models see, e.g., [C1, C2]. Percolation theory in
continuous media is naturally related to classical problems of stochastic
geometry, see, e.g., [St].

In the following section we state the framework in which we want to
develop our approach and give a model for the formation of clusters of
typical sizes and shapes. We end this section by giving the expected relation
between the (translation invariant) model in R2 and the result of numerical
simulations which deal with finite systems and a finite number of out-
comes.

To take a definite example, we consider in R2 a distribution of disks of
radius R thrown at random with mean density r in a large volume V which
we assume to be a square of side L (V=L2). The disks are allowed to
overlap.

The mean density r is the relevant physical parameter describing the
system, but it is more convenient to use as equivalent dimensionless
parameter the filling factor g=rpR2 which represents the mean number of
centres on the surface of any given disk. When g is very small, for a ‘‘typi-
cal realization w,’’ the vast majority of the disks are isolated and the
clusters are very small. When g increases, the size of the clusters increases
and at a given value gc(V, w) there is a connected cluster which joins
opposite sides of the square.

If the random variable gc(V, w) converges in probability law, when L
goes to infinity, to a constant gc, we say that when g N gc there is an inci-
pient spanning cluster. The convergence of gc(V, w) to a constant gc is
expected to follow a one-zero law.

The constant gc has been obtained by numerical simulations. For a
system of overlapping disks one obtains gc nearly 1.18 (see [I] and refer-
ences therein).

The existence of an infinite cluster is related to the connectivity property
of the random system. Themain characteristics of the cluster distribution are:

— the probability P. for a disk to belong to an infinite cluster

— the correlation length t which is the maximum size above which
the clusters are exponentially scarce

— the average cluster size Scl (mean size of the clusters containing one
fixed disk).

There is a strong numerical evidence that, for different types of per-
colation (on various lattices, for both bond or site percolation) and in
the limit of infinite volume, there exists, near the percolation threshold,
a power law dependence for the quantities P., t, Scl, with characteristic
critical exponents b, n, c such that:
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P.(g)=11−
gc

g
2b; g \ gc

t(g)=|g−gc |−n

Scl(g)=|g−gc |−c.

(1.1)

These critical exponents are believed to reflect a universal property of per-
colation and to depend only on the dimension d and not on the structural
details of the lattice (square, triangular,...) nor on the type of percolation
(site, bond or continuous). This universality is expected to be a general
feature of second order phase transitions.

In two dimensions these exponents are conjectured to be exact (see
[Bax], [D] and [Gr, p. 252]):

gc % 1.18, b=5/36, n=4/3, c=43/18.

In [ZS] a (not one-to-one) mapping from continuous to lattice percolation
is derived allowing to prove the existence of a non-trivial critical percola-
tion density in the continuous case (see also [Gr]). In [MR], a systematic
account of continuous percolation is given, in particular a rigorous
approach enables the derivation of bounds for the critical density of disks
in two dimensions.

The same description can be used for sphere percolation in R3 with a
filling factor g (d=3)=r 43 pR

3. In this case the critical exponents have been,
up to now, obtained uniquely by numerical simulations. The values found
here are:

gc % 0.35, b % 0.41, n % 0.90, c % 1.8.

Nevertheless, in R3, as in R2, lattice percolation and continuous percolation
belong to the same universality class of critical phenomena: the class of
random (uncorrelated) percolation in Rd.

Remark 1.1. In both dimensions 2 and 3, the fraction F of volume
occupied by randomly overlapping objects is defined by F(g)=1− exp(−g)
(see [SK]) andF(gc) is found less than gc

F(gc) % 0.68 in d=2,

F(gc) % 0.30 in d=3.

In R the continuous percolation problem is trivial. Indeed, F=1, which
requires g=. and r=..
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However, besides numerical simulations there is till now no approach to
calculate the critical parameters and the typical processes underlying con-
tinuous percolation as was done [K] for bond percolation on the lattice Z2.
Our aim in this work is to develop a strategy leading to an estimation of
the critical parameter gc and to a better insight concerning the sizes and
shapes of the typical clusters near the percolation threshold.

Our procedure for overlapping disks is described in Section 2. In
Section 3, we show that the approach is quite generic in the sense that it
can be adapted to study continuous percolation of objects of any shape.
Several examples are given in Section 4.

2. CLUSTER MODELS

In [Al1] an heuristic percolation criterium for continuous systems is
proposed based on the comparison of two fundamental lengths of the
system, namely the average bounding length l1 (defined as the mean dis-
tance between the centres of two adjacent disks) and the average distance lk
between the centres of two adjacent disks each of which having at least k
neighbours. The authors of [Al1] postulated that percolation, which can
be regarded as the condition that the system be macroscopically connected,
occurs when the condition lk=2l1 is fulfilled for some definite value of k
depending on the space dimension.

They approximated the mean distance lk of points having at least k
neighbours using their effective density, which can be computed from the
basic Poisson law. The results they obtained (k=4 in dimension 2 and
k=2 in dimension 3), are in good agreement with numerical simulations.
The aim of our work is to use probabilistic arguments to improve on [Al1]
and give an insight concerning the size and structure of the clusters near the
percolation threshold.

We will mainly concentrate on a case in which the objects are in R2 and
have the same size and shape, namely disks of radius R. In a box of size L
we throw N disks at random with density r=N/L2=N/V. A k-cluster ck
is a maximal set of k overlapping disks; its shape and diameter D(ck)
depend on the positions of the centres of the disks (the diameter is the
largest distance between two points lying on any of the disks of the cluster).

We shall give below arguments that support the following picture: if
r < rc for a box of size L± R and for a vast majority of realizations, the
relative number of k-clusters is small if k \ kmax; we predict kmax=6 or 7,
which is compatible with a critical density gc 4 1.18 and also with numerical
simulations (of course if r is very small the k-clusters are scarse if k \ 2).

When two clusters ck and c
−

kŒ overlap, they form a (k+kŒ)-cluster. Our
arguments suggest that this happens only at a density r < rc, r 4 rc (i.e.,
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r=rc− E for E very small) and that it happens ‘‘simultaneously’’ at all
length scales (i.e., no matter how large is L). In other words, by increasing
the density (i.e., by adding a few disks per unit volume), the incipient
spanning cluster emerges ‘‘suddenly’’ from configurations in which there is
an overwhelming majority of small connected clusters whose distance goes
to zero as r ‘ rc. This suggests that the ‘‘scale-invariance’’ argument,
typical of a renormalization-group procedure, is valid even at the scale of
very small clusters.

For a box of size L± R and for a given realization w(N, r) of the
process, denote by the name of ‘‘global k-cluster’’ the collection of the
k-clusters in the realization. Notice that for any realization w this defines
an (empirical) measure mN, rk on the set of k-clusters, for every N. For each
fixed value of the density r, in the limit N Q., V Q., N/V=r, this
defines an empirical measure mrk on the k-clusters, for each value of
k=1, 2,...; the measure is (almost surely) independent from the sequence of
realizations chosen.

We shall denote by mr the induced measure on all clusters and by Dk
the average under mrk of the diameter of the k-clusters.

Describing the measure m is a difficult task; for a given realization in a
volume V there may be big fluctuations in mN, rk as N varies (adding a few
disks for a given finite L may change discontinuously the average of nk/N
by changing two clusters into a bigger one, nk being the number of k-clusters).
Therefore we will later switch our attention to a different measure, m̃r=
; m̃rK, where m̃rK is concentrated on a different set of configurations which
we shall denote by the name ‘‘spherical configurations of K+1 disks’’ and
for short by ‘‘spherical (K+1)-clusters’’ (see Section 2.2).

We shall see at the end that, for the problem we are considering, the
set of configurations on which m̃ is concentrated gives a nice description of
the properties of the system (known from numerical simulations) and can
then be considered as leading in the mean to the same results as the real
measure m.

The measure m̃rK depends only on a free parameter with the dimension
of a length (the radius by which one will define the spherical clusters) that
we will eventually connect with the distribution of the radii in the global
cluster. For the sets on the support of m̃rK, it is comparatively easy to give a
definition of connectedness in term of an effective distance d between the
centres of two spherical clusters. This leads to a determination of the criti-
cal density and at the same time gives a relative probability of spherical
(K+1)-clusters near the percolation threshold in fair agreement with the
available numerical simulations.

Actually, relying on numerical simulations showing random configu-
rations of discs near criticality, one can see that the main part is made of
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compound structures of few discs. These compound structures can be seen
as the building blocks of the general clusters.

Let us now introduce the main ideas on which we base our argument.
Considering independent families of spherical (K+1)-clusters (with a fixed
number of elements) our aim is to establish whether some families are more
relevant than others at the percolation threshold. This leads simultaneously
to the determination of the critical density rc. This idea can also be related
to several kinds of cluster models already investigated in the past, e.g., the
‘‘nodes, links and blobs model’’ of Pike and Stanley [PSt] where related
type of arguments were introduced in order to characterize the global fea-
tures of clusters near criticality.

It should be noticed that the mechanism we propose provides at the
same time a rough idea of the shape of the infinite cluster, since the specific
realizations of the involved clusters possess a structure suggesting the pre-
dominance of prongs which attach to each other leaving holes in between.

A further remark concerns the possibility to have a unified treatment
for different types of shapes of the elementary objects, provided that their
distribution preserves the translational and rotational invariances. In that
case we have only one typical length (depending on the shape and size of
the elementary objects), the ‘‘connectivity distance’’ a between the distin-
guished points of the elementary objects. One can then introduce spherical
clusters whose critical radius as well as the effective distance between the
centres of two clusters are expressed in a standard way in term of a and
exactly the same approach as before leads to the specific critical density.

2.1. Characteristic Size of the k-Clusters

First let us collect some results concerning the cluster sizes.
In R2 we consider disks with a fixed radius R distributed with a

uniform density r. Disks are then defined by their centres, say Oi, i ¥ Ik=
{1,..., k}. Two disks O1, O2 are neighbours iff |O1O2 | [ 2R. The underlying
probability is the Poisson law. The probability that there are k occupied
points in a domaine of surface area v is given by

Pk(rv)=
(rv)k

k!
exp(−rv) (2.1)

and rv is the mean number of occupied points in the domain.
Consider a cluster of size k (group of k connected disks). A sufficient

condition in order to take into account that the cluster contains exactly k
elements is to consider that it is surrounded by an empty region whose
minimal volume depends on the shape of the cluster. The volume of this
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Fig. 1. k-cluster of radius r0.

empty region is minimal if the centres of the disks almost coincide, but this
event is globally rare. For the same total volume of overlapping disks, the
empty volume is minimal if the disks are brought together in a compact
shape.

In this spirit, let us consider the following events

A1=
def
{there are k centres in a sphere of radius r0},

A2=
def
{there is no centre in the corona ]r0, r0+2R]}.

In Rd the probability of the event A1 5A2 is given by: (with pd denot-
ing the volume of the unit ball in dimension d):

P(k-cluster of radius r0)

=P(A1 5A2)=
(rpdr

d
0)
k

(k)!
exp(−rpdr

d
0) exp[−rpd((r0+2R)d−rd0)].

This probability is maximal for r0=r̃0(k) given by r̃0(r̃0+2R)d−1= k
rpd

.
For d=2, this leads to

r̃0(k)
R

=−1+=1+
k
rpR2

=−1+=1+
k
g
. (2.2)

2.2. The Spherical Cluster Model

The previous arguments give a hint as to which is the most probable
radius of an element of the global k-cluster. Due to the invariance of
A1 5A2 under rotation, the density of the centres in a global k-cluster is
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invariant under simultaneous rotation. To determine the actual joint dis-
tribution of k-clusters in a global k-cluster is still a formidable task. We
introduce therefore a subfamily of the global k-clusters which is easier to
handle and still suitable to describe in a proper way the critical parameters
of the percolation transition.

We call ‘‘spherical (K+1)-cluster’’ centered in O the collection of
configurations in which an occupied point O is surrounded by K occupied
points A1,..., AK located on a circle of radius lR centered in O. The
measure on this set of points is the one induced by the uniform distribution
of each Ai on the circle of radius lR centered in O.

Remark 2.1. The parameter l above is for the moment a free param-
eter meant to take the place of the joint distribution of theK+1 centres of the
disks in a global cluster. It is meant to characterize the mean distance between
the centre of a ‘‘spherical (K+1)-cluster’’ and its K neighbours. This will be
used to give a criterium by which we can state that two spherical clusters are
separated from each other by looking at the distance of their centres. Even-
tually we shall identify lR with the ‘‘most probable’’ radius of the global
(K+1)-cluster previously called r̃0(K+1).

For spherical clusters it is relatively easy to provide a definition of
connectedness. Consider two spherical (K+1)-clusters centered in O1 and
O2 respectively.

Let |O1O2 |=dR. The mean of the minimum square Euclidean distance
between elements of two distincts spherical (K+1)-clusters is

[MK(l, d) R]2=Omin
(X, Y)

{d2(X, Y); X ¥ {O1, Ai} i ¥ IK , Y ¥ {O2, Bj} j ¥ IK}P
(2.3)

where the average O P is w.r.t. the uniform distribution of the centres of the
disks on the circle of radius lR.

We say now that two spherical (K+1)-clusters are connected if
MK(l, d) R is less than or equal to 2R. The critical value dKc for connecti-
vity is then defined by the equality

MK(l, dKc )=2. (2.4)

The functions MK(1, dKc /l) can be determined and dKc , which is a function
of both K and l, satisfies the threshold condition corresponding to the
percolation condition

MK(1, dKc /l)=2/l. (2.5)

Connectivity Properties of Continuum Percolation Processes on R2 9



2.3. Connection with the Critical Density of Disks

In order that the ‘‘spherical (K+1)-clusters’’ give rise to percolation,
their number (which is a function of the density of disks r) has to be high
enough. If nK is the density of such clusters (which we take to be uniformly
distributed due to the uniform distribution of disks), the mean distance
between the centre of two adjacent spherical (K+1)-clusters is nothing but
`1/nK. We call RLK this mean distance.

We have now to precise what the density nK is. In fact we shall use an
approximation tied to the basic Poisson law describing the distribution of
disks. Consider a disk centered in O. The probability that this disk intersect
exactly K other disks is the conditional probability that in a circle with
centre O and radius 2R there are K+1 occupied points one of them being O.
It is given by (see formula (2.1))

PK(p(2R)2 r)=PK(4g). (2.6)

The density of these configurations is just

XK=rPK(4g).

We assume that nK is of the order of XK in such a way that the mean dis-
tance between the centres of the family of clusters we are interested in is
given by the relation

RLK %= 1
XK

. (2.7)

The last hypothesis we make is that we can replace, at least near the perco-
lation threshold, the distribution of disks described by the global k-clusters
for fixed k by a distribution of spherical (K+1)-clusters (k=K+1) with
density XK. Percolation through ‘‘spherical (K+1)-clusters’’ occurs if the
distance between the centres of two such clusters is, in the mean, less than
or equal to the distance of connection RdKc . Near criticality, the following
condition has therefore to be fulfilled

dKc =LK. (2.8)

The three relations (2.5), (2.7), and (2.8), together with the additional con-
dition lR=r̃0(K+1) allow then to calculate the critical value rc(K+1) at
which the spherical clusters of type K+1 percolate. We then obtain the
percolation critical value at which percolation is expected to occur if only
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clusters of exactly K+1 elements are relevant. In fact considering the dif-
ferent families as independent, the expected critical density is the minimum
with respect to K of rc(K+1)

rc=min
K
rc(K+1).

In this expression, the value Kmin of K corresponding to rc leads to the
expected informations concerning the shape of the dominant clusters near
criticality.

Before proceeding to explicit calculations, we summarize the sequence
of steps leading to a reasonable numerical value for the critical density for
continuum percolation of uniformly distributed disks. At the same time it
gives hints concerning the distribution of connected clusters near the per-
colation threshold. The only relevant parameters are the disk radius R and
their density r.

1. Existence of a characteristic size for the ‘‘most probable’’ k-clusters
at fixed density r. An isolated k-cluster is a set of k disks whose centres are
located in a circle of radius r0 surrounded by a void corona of thickness
2R. This most probable k-cluster have then a radius r̃0(k) — r̃0(k, R, g) with
g=pR2r, see formula (2.2).

2. Introduction of the set of configurations that we call ‘‘spherical
(K+1)-clusters’’ which contain a parameter, with a dimension of a length,
which we identify with r̃0(K+1), see Section 2.2. The spherical (K+1)-
clusters are supposed to have a density which depends only on the basic
Poisson law.

3. Connectivity condition between two spherical (K+1)-clusters C1
and C2. This condition is the requirement that the average minimum dis-
tance between the centres of two disks belonging, respectively, to C1 and C2,
should be less than or equal to 2R. When it is equal to 2R, the distance dR
between the centres of the clusters C1 and C2 reaches a critical value d

K
c R,

see formula (2.5).
Percolation is expected to occur when the density r of disks is suffi-

cient to insure that the connectivity condition is satisfied, i.e., that the
mean distance between the (K+1)-clusters is of the order of dKc R, see
formulas (2.7) and (2.8).

These ideas can be considered as independent and they all contribute
to the characterization of the structure of the clusters at the percolation
threshold and give an insight about the structure of the incipient spanning
cluster.
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2.4. Explicit Calculations (d=2)

In what follows, we will use dimensionless variables. If one identifies
l with the radius of the ‘‘most probable’’ k-cluster containing k=K+1
disks, see Eq. (2.2), one gets:

l —
r̃0(K+1)

R
=z=−1+=1+

K+1
g

.

Denoting by fK(x)=[MK(1, x)]2 (with x=dc/l), where MK is defined in
formula (2.3) and writing the Poisson law under the form

hK(g)=
1

K!
[4g]K+1 exp(−4g)

we are lead to the following set of self consistent equations

˛
z=zK(g)

fK(x)=
4
z2

hK(g)=
4p

x2z2

(2.9)

which can be rewritten as an implicit equation in the variable g

4p
[zK(g)]2hK(g)

=5f−1K 1
4

[zK(g)]2
262

in such a way that the critical value gc(K) is given by the smallest abcissa
corresponding to the intersection points of the curves FK(g) and HK(g)
defined by

˛FK(g) = f−1K 1
4

[zK(g)]2
2

HK(g)== 4p
[zK(g)]2 hK(g)

.

(2.10)
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2.5. Asymptotics

Letting K Q., in any location of the border of the spherical (K+1)-
cluster, there is with probability one a neighbour of the centre. If we con-
sider two such clusters the minimum of the distance between two occupied
points is just

lim
KQ.

MK(l, d)=d−2l. (2.11)

The corresponding function fK behaves like limKQ.fK(x)=(x−2)2.
In this limit we can study analytically the intersections of the curves

FK(g) and HK(g). For sufficiently large K the critical value is found to be

gc(K) %
1
4

(K+1) 11+= ln K
K
2 . (2.12)

2.6. Results and Comments

The functions fK(x) can be computed by Monte Carlo simulations in
order to determine the critical filling factor gc. (See the set of curves in
Figs. 2 and 3). However in the case K=4, f4(x) has been derived analyti-
cally and compared to the Monte Carlo simulation (see Appendix and
Fig. 6).

Fig. 2. Functions fK(x), average square of the minimum distance between spherical (K+1)-
clusters for K=3, 4, 5, 6.
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Fig. 3. Percolation critical criterium determined through the intersection of the curves
HK(g) and FK(g) for K=3, 4, 5, 6.

The results we get are the following

• there is no solution for K [ 3.

• for K=4 the curves are almost tangent but they really cut for K \ 5.

• for K=5 or 6 the results are very close and correspond to a value of
gc below 1.2. Surprisingly enough, using any kind of reasonable interpolat-
ing procedure between the cases K=4 and K=5 leads to a percolation
critical value of

gc % 1.18

which is quite close to the value obtained by numerical simulations.
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• for K > 6, gc(K) increases and behaves roughly as 1
4 (K+1) for

K Q..

In fact percolation seems to appear simultaneously in the different
classes of clusters for K between 4 and 6. This justify in some sense the
heuristic argument given by Alon and Drory [Al1] concerning the impor-
tance near the percolation threshold of occupied points which have at least
4 neighbours. This is also compatible with what can be seen in numerical
simulations.

3. GENERALIZATION TO OTHER BASIC SHAPES

One can use our model in order to determine the critical parameter for
continuum percolation of objects of various shapes if one postulate the exis-
tence of amean connectivity distance between two such objects and moreover,
as in the case of disks, consider only ‘‘spherical (K+1)-clusters.’’

More precisely, let us consider identical planar objects P thrown at
random in R2 with density r. The size of an object depends on some typical
length L. Suppose that the configuration of each of the copies can be
characterized by the position xi of a distinguished point O and a direction
specified by an angle j. The points xi are distributed according to a
Poisson law and the angles are uniformly distributed.

As an example, one can consider needles of a given length 2L and take
as distinct point O the centre of mass of the needle or one can take squares
of a given size, with uniformly distributed orientation or with a fixed
orientation.

A point O in space is occupied iff there is an object whose characteris-
tic point is located in O. Two objects (their positions being specified by the
doublets {O1, j1} and {O2, j2}) are adjacent if they overlap. This happens
if the distance |O1O2 | is less than some distance 2ah which depends only of
their relative orientation h.

Definition 3.1. The mean connectivity distance 2a between two
objects P is defined as the average

2a=O2ahPh (3.1)

where h is a uniformly distributed random variable in a set T. Two objects
are said to be adjacent if |O1O2 | [ 2a.

Remark 3.1. The mean a — a(L) is proportional to L, the charac-
teristic length of the basic objects P.
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As previously we can then define:

• The radius of the most probable k-cluster. A k-cluster of objects P is
again a set of k occupied points located in a circle of radius r0 surrounded
by an empty corona ]r0, r0+2a]. As previously (2.2) we obtain the radius
of the most probable k-cluster:

r̃0(r̃0+2a)=
k
rp

and

r̃0(k)
a

=−1+=1+
k
rpa2

. (3.2)

• Percolation condition. Using the same scheme defined in the previous
Section, we consider two spherical (K+1)-clusters of objects P and we
define again the dimensionless parameters l and d such that

|O1Ai |=la=r̃0(K+1) (=|O2Bj |), |O1O2 |=da. (3.3)

Using Definition (2.3) for the mean minimum distance MK(l, d) a between
two (K+1)-clusters of objects P, the percolation condition reads

MK(l, d) a [ 2a (3.4)

which gives a critical value dKc of d, for fixed l

MK(l, dKc )=2. (3.5)

The functions MK(1, d/l) are independent of the peculiar shape of objects
considered and the same is true for the percolation condition

MK(1, dKc /l)=2/l. (3.6a)

The second condition giving the mean distance LK (in a units) between
occupied points having K-neighbours (centres of (K+1)-clusters) and the
density XK, is also the same

(aLK)2 XK % 1

where

XK=rPK(r4pa2)=r
(r4pa2)K

K!
exp(−r4pa2) (3.6b)
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and the same is true at the percolation threshold for the condition

dKc % LK. (3.6c)

Now, in this framework, we have to use as definition of g, g=rpa2.
Then, using (2.9), the smallest intersecting point of the standard curves
gives the critical value gc, whatever percolating objects P are considered in
the generalized model

gc=rcpa2 % 1.18. (3.7)

The specificity of a peculiar percolation problem is then completely con-
tained within the relation a=a(L).

4. EXAMPLES

4.1. Square Percolation

The basic objects are squares of side 2L and centre O.

4.1.1. Squares with Random Orientation

We consider one square S1 (centre O1) and all other squares (e.g., S2,
centre O2), with a fixed orientation h with respect to S1, in the limit cases
for which S1 5 S2 ]”.

The mean value of |O1O2 | can be calculated for h fixed, as well as the
mean value of a for h uniformly randomly distributed. We obtain

2a=2.42L.

Using again

prca2=1.18=p(1.21)2 rcL2

we get

rc(2L)2=
4(1.18)
p(1.21)2

=1.03.

This number has to be compared to the values obtained by numerical sim-
ulations which are very near 1.10 (see, e.g., [I]).
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4.1.2. Squares with Same Orientation

The obtained value here for a is 2a=2.30L and

rc(2L)2=
4(1.18)
p(1.15)2

=1.14

which is also in very good agreement with the value obtained by Garboczi
(see [G])

rc(2L)2=1.147.

4.2. Needles Percolation

The basic objects here are needles of length 2L and centre O. We con-
sider one needle AB (centre O1) and all the needles, with fixed orientation h
with respect to AB, which intersect AB.

Their centres have to be within the parallelogram P and are uniformly
distributed. The extreme cases correspond to centres located on the peri-
meter “P of P. Let E be such a centre. Then the mean value A=O|O1E|P“P
is a function of h. The angle h is a random variable with uniform distribu-
tion and we can calculate the mean value OAPh which has to be identified
with 2a. We obtain

2a=1.09L.

The percolation critical parameter rc(2L)2 for needles of length 2L is
known from numerical simulations: rc(2L)2=5.71±0.12. Using (3.7), our
model leads to

prca2=1.18=p(0.543)2 rcL2

Fig. 4. Needles percolation.
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and

rc(2L)2=
4(1.18)
p(0.543)2

=5.08.

This can be considered as a good approximation with regards to the great
generality of the model and the extreme geometric features of needles as
percolating objects.

5. CONCLUSION

We have discussed a model for continuous percolation in R2 for quite
general geometrical object shapes based on probabilistic estimations of
events (k-clusters) describing both the most probable shape and the condi-
tions for (local) connectivity of these clusters at criticality. This model leads
to critical percolation parameters in fairly good agreement with both
numerical computations and heuristic criteria proposed so far. Moreover it
gives a hint for the structure of the connected clusters near the percolation
threshold.

The study of the scaling properties of spherical (K+1)-clusters near
criticality through a renormalization group (RG) technique is under inves-
tigations. Indeed the simple geometric features of the objects used in the
model should allow a manageable application of RG theory to see whether
the simple local arguments that have been developed in this work con-
cerning critical percolation densities can also lead to reasonable scaling
predictions.

We have tried to present our arguments in such a way as to stress the
basic ideas and approximations.

APPENDIX. AVERAGE MINIMUM DISTANCE BETWEEN DISKS OF

TWO SPHERICAL (K+1)-CLUSTERS

The square distance between the disks Ai, Bj of two spherical (K+1)-
clusters is given by (see Section 2.2 and Fig. 5)

lK(x)=[x− cos(j)− cos(h)]2+[sin(j)− sin(h)]2 (5.1)

with x=d/l=|O1O2 |/|O1A1 |.
We want to compute the following average

fK(x)=[MK(1, x)]2=Omin
(i, j)

{lK(Ai, Bj, x) i, j ¥ IK}Pj1,..., jK, h1,..., hK

=OmK(x)2Pj1,..., jK, h1,..., hK . (5.2)
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Fig. 5. Distance between spherical (K+1)-clusters.

j and h are uniformly distributed random variables in [0, 2p]. Intro-
ducing random variables a and b (with the same distribution) such that
j=a+b and h=a−b, one gets

la, bK (x)=2+x2+2 cos(2a)−2x[cos(a+b)+cos(a−b)]. (5.3)

This expression is invariant under sign symmetry in both a and b variables.
It allows us

— first to consider the (ji, hj)-averages only on the upper half-clusters,

— thence, to suppose both theAi’s and Bj’s to be ordered on each upper
half cluster.

From this it follows that mK(x)2=min(i, j){lK(Ai, Bj) i, j ¥ IK} is obviously the
distance between the closest points from each (half) spherical cluster. The
average reduces to

1K!
pK
22 Fp

0
dj1 F

j1

0
dj2 · · ·F

jK−1

0
djK F

p

0
dh1 F

h1

0
dh2 · · ·F

hK−1

0
dhK mK(x)2

(5.4)
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Fig. 6. Comparison of computed and simulated average minimum distance f4(x) between
disks belonging to two spherical (K=4)-clusters.

where K! is the number of ways one can order the K disks on each half
spherical cluster. We find, for K=4

f4(x)=2+x2+
4608
p8

−
3456
p6

+
96(7+2x)
p4

−
16(2+3x)
p2

(5.5)

In Fig. 6 we have represented both the results of a Monte Carlo simu-
lation and the function (5.5) f4(x) showing an excellent agreement
provided d \ 2l which is the distance below which the spherical 4-clusters
begin to overlap.
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